Knorex Research Paper Accepted for Presentation at the PAKKD 2019 Conference at Macau, China
Our Senior Research Scientist Mr Jin Yi Ping is presenting his team research paper titled “Bridging the Gap between Research and Production with CODE” at
We build AI-driven advertising technologies and solutions for marketers
Knorex R&D members come from these world-leading universities, institutes, and organizations in AI and NLP.
We have intern and research positions available all year round. Email hr@knorex.com to chat with us and apply.
Our Senior Research Scientist Mr Jin Yi Ping is presenting his team research paper titled “Bridging the Gap between Research and Production with CODE” at
Jin, Y., Wanner, L., Kadam, V., & Shvet, A. (2023). Towards Weakly-Supervised Hate Speech Classification Across Datasets. Proceedings of the 7th Workshop on Online Abuse and Harms (WOAH 2023). Toronto, Canada.
Kadam, V., Jin, Y., & Nguyen-Hoang, B. D. (2022). Automated Ad Creative Generation. Proceedings of the 15th International Conference on Natural Language Generation (INLG). Maine, USA.
Jin, Y., Kadam, V., & Wanvarie, D. (2022). Plot Writing From Pre-Trained Language Models. Proceedings of the 15th International Conference on Natural Language Generation (INLG). Maine, USA.
Jin, Y., Knorex Pte Ltd, 2021. Cross-domain contextual targeting without any in-domain labelled data. U.S. Patent 11,093,969.
Jin, Y., Bhatia, A., & Wanvarie, D. (2021, June). Seed Word Selection for Weakly-Supervised Text Classification with Unsupervised Error Estimation. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop (pp. 112-118).
Jin, Y., Kadam, V., & Wanvarie, D. (2021, June). Bootstrapping Large-Scale Fine-Grained Contextual Advertising Classifier from Wikipedia. In Proceedings of the Fifteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-15) (pp. 1-9).
Jin, Y., Bhatia, A., Wanvarie, D., & Le, P. T. (In press). Towards Improving Coherence and Diversity of Slogan Generation. Natural Language Engineering, 1, 33.
Jin, Y., Wanvarie, D., & Le, P. T. (2022). Learning from noisy out-of-domain corpus using dataless classification. Natural Language Engineering, 28(1), 39-69.
Charoenphakdee, N., Lee, J., Jin, Y., Wanvarie, D., & Sugiyama, M. (2019, November). Learning Only from Relevant Keywords and Unlabeled Documents. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) (pp. 3993-4002).
Jin, Y., Wanvarie, D., & Le, P. T. (2019, April). Bridging the Gap Between Research and Production with CODE. In Pacific-Asia Conference on Knowledge Discovery and Data Mining (pp. 277-288). Springer, Cham.
Nguyen-Hoang, B. D., Pham-Hong, B. T., Jin, Y., & Le, P. T. (2018). Genre-oriented web content extraction with deep convolutional neural networks and statistical methods. In Proceedings of the 32nd Pacific Asia Conference on Language, Information and Computation.
Jin, Y., Wanvarie, D., & Le, P. (2017, November). Combining lightly-supervised text classification models for accurate contextual advertising. In Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers) (pp. 545-554).
Jin, Y., Wanvarie, D., & Le, P. (2017, November). Combining lightly-supervised text classification models for accurate contextual advertising. In Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers) (pp. 545-554).
Jin, Y., & Le, P. (2016). Selecting domain-specific concepts for question generation with lightly-supervised methods. In Proceedings of the 9th International Natural Language Generation Conference (pp. 133-142).
XPO Platform
Resources
Company
Data, Privacy & Protection
Newsletters & Updates
By subscribing, you have read and understood our Terms of Use and Privacy Policy, and you agree to receive marketing communications of our products and services. You may opt out anytime.